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Divisible Effect Algebras

Sylvia Pulmannová1

Divisible effect algebras and their relations to convex effect algebras and MV-algebras
are studied. A categorical equivalence between divisible effect algebras and ratio-
nal vector spaces is proved. Infinitesimal, sharp and extremal elements in divisible
effect algebras are studied and their relations to properties of the state space are
shown.
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1. INTRODUCTION

Effect algebras as partial algebraic structures with a partially defined operation
⊕ and constants 0 and 1 have been introduced as an abstraction of the Hilbert-space
effects, i.e., self-adjoint operators between 0 and I on a Hilbert space (Foulis and
Bennett, 1994). An alternative structure, D-posets, was introduced by (Kôpka and
Chovanec, 1994). These structures play an important role in the theory of quantum
measurements, (Bush et al., 1994; Ludwig, 1983).

From the structural point of view, effect algebras are a generalization of
boolean algebras, MV-algebras, orthomodular lattices, orthomodular posets, or-
thoalgebras. For relations among these structures and some other related structures
see (e.g., (Pulmannová, 1997; Dvurečenskij and Pulmannová, 2000)).

A very important subclass of effect algebras are so-called interval effect
algebras (Bennett and Foulis, 1997), which are representable as intervals of the
positive cone in a partially ordered abelian group. Examples of this kind are Hilbert-
space effects, MV-algebras, effect algebras with ordering set of states (Bennett and
Foulis, 1997), effect algebras with the Riesz decomposition property (Ravindran,
1996; Pulmannová, 1999), convex effect algebras (Gudder and Pulmannová, 1998;
Beltrametti et al., 1999). We note that a general characterization of interval effect
algebras among effect algebras is an open problem.

1 Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia;
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In Pulmannová (2001) it is shown that divisible effect algebras are interval ef-
fect algebras. In the proof, “word method” was used, following Baer (1949), Wyler
(1966/1967), and Ravindran (1996). This method was compared with the method
used for convex effect algebras by Gudder and Pulmannová (1998). Completions
in order-unit norm and their relations to state spaces have also been studied there.

In this paper, we prove a categorical equivalence between divisible effect
algebras and rational vector spaces. We study relations between sharp and ex-
tremal elements in divisible effect algebras. We show that a divisible effect algebra
becomes an MV-algebra if and only if it is lattice ordered.

2. EFFECT ALGEBRAS AND INTERVAL EFFECT ALGEBRAS

Let (E ; ⊕, 0, 1) be an effect algebra, i.e., ⊕ is a partially defined binary
operation and 0 and 1 are constants (0 �= 1), such that the following axioms are
satisfied for any a, b, c in E :

(E1) a ⊕ b = b ⊕ a (commutativity),
(E2) (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) (associativity),
(E3) For every a ∈ E there is a unique b ∈ E such that a ⊕ b = 1 (supple-

mentation),
(E4) a ⊕ 1 is defined iff a = 0 (zero-one law).

We denote the element b from (E3) by a′, and call it the orthosupplement of a.
The equalities in (E1) and (E2) are to be understood in such a way that if one
side exists, then exists the other and they are equal. Owing to (E2), we need not
write brackets in expressions like a ⊕ b ⊕ c or a1 ⊕ a2 ⊕ · · · ⊕ an , the latter being
defined recurrently.

Define, for n ∈ N, na as follows: 1a = a, na = (n − 1)a ⊕ a if (n − 1)a and
(n − 1)a ⊕ a are defined. If there is a greatest n ∈ N such that na is defined, then
this n is called the isotropic index of a, denoted by ι(a). If na is defined for all
n ∈ N, we put ι(a) = ∞. Define also 0a := 0 for every a ∈ E .

Let us write a ⊥ b iff a ⊕ b is defined. Then ⊥ is a binary relation on E ,
the domain of ⊕. Let us also define the binary relation ≤ by a ≤ b iff there is
c ∈ E such that a ⊕ c = b. It turns out that the element c is unique, and we shall
write c = b � a iff a ⊕ c = b. Then ≤ is a partial order on E . Moreover, a ⊥ b
iff a ≤ b′. From this it follows that a ⊥ b and a1 ≤ a, b1 ≤ b imply a1 ⊥ b1.

In every effect algebra E , the following cancellation property: a ⊕ c ≤ b ⊕ c
implies a ≤ b, and positivity property: a ⊕ b = 0 implies a = 0 = b are valid.

Let E , F be effect algebras. A mapping h : E → F is a morphism if a ⊥ b
implies h(a) ⊥ h(b) and h(a ⊕ b) = h(a) ⊕ h(b), and h(1) = 1. Then clearly,
h(a′) = h(a)′, h(b) � h(a) = h(b � a) whenever a ≤ b, and a ≤ b implies h(a) ≤
h(b). A morphism is a monomorphism if a ⊥ b if and only if h(a) ⊥ h(b). A sur-
jective monomorphism is an isomorphism.



Divisible Effect Algebras 1575

Let (G, G+) be a partially ordered abelian group (additively written) with a
positive cone G+, and choose an element a ∈ G+. Consider the interval [0, a] ⊆
G+. Define a partial operation ⊕ on [0, a] as follows: x ⊥ y if x + y ≤ a, and
then x ⊕ y = x + y. It is easy to check that with this operation ⊕ and with a as a
unit element [0, a] is an effect algebra. A very important class of effect algebras,
so called interval effect algebras, arise this way (Bennett and Foulis, 1997; Foulis
et al., 1994).

Example 2.1. The interval [0, 1] of the real line R is an interval effect algebra.
More generally, let [0, 1]X be the set of all functions from a set X to the unit
interval [0, 1]. As an interval of RX , it is an interval effect algebra. Notice that the
above examples are also examples of MV-algebras.

Example 2.2. Let H be a Hilbert space. Consider the group of all bounded self-
adjoint operators Bs(H ) on H . The interval E(H ) := [θ , I ], where θ is the zero
and I is the identity operator, is an interval effect algebra. Elements of E(H) are
called Hilbert space effects.

3. DIVISIBLE EFFECT ALGEBRAS

We say that an effect algebra E is divisible if for each a ∈ E and each n ∈ N

there is a unique x ∈ E such that a = nx . We will write x = (1/n)a.
In the next lemma, we collect some simple properties of divisible effect

algebras that have been proved by Pulmannová (2001).

Lemma 3.1. Let (E ; ⊕, 0, 1) be a divisible effect algebra.

(i) if m, n ≥ 1 and a ∈ E, then

1

n

(
1

m
a

)
= 1

mn
a.

(ii) If m, n ≥ 2 and a ∈ E, then (1/m)a ⊥ (1/n)a and

1

m
a ⊕ 1

n
a = (m + n)

(
1

mn
a

)
= m + n

mn
a.

(iii) If a, b ∈ E and a ⊥ b then for any n ∈ N, (1/n)a ⊥ (1/n)b and

1

n
a ⊕ 1

n
b = 1

n
(a ⊕ b).

(iv) If a ≤ b, then for any n ∈ N,

1

n
a ≤ 1

n
b.
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(v) If m ≤ n, then for any a ∈ E,

1

n
a ≤ 1

m
a.

(vi) If na is defined for n ∈ N, a ∈ E, and m ≥ n, then

1

m
(na) = n

(
1

m
a

)
= n

m
a.

(vii) If na is defined for some n ∈ N, then for any m ∈ N, n((1/m)a) is
defined, and

n

(
1

m
a

)
= 1

m
(na).

(viii) If for some n ∈ N and a, b ∈ E, (1/n)a = (1/n)b, then a = b.
(ix) If for some m, n ∈ N and 0 �= a ∈ E, (1/m)a = (1/n)a, then m = n.
(x) If m, n ≥ 2, then for any a, b ∈ E, (1/n)a ⊥ (1/m)b.

Examples 1 and 2 are divisible effect algebras. An example of an interval
effect algebra which is not divisible is so-called diamond (see (Pulmannová, 2001,
Example 3)).

Pulmannová (2001) proved the following theorem using the “word” technique
following Baer (1949), Wyler (1966/1967) and Ravindran (1996).

Recall that if E is an effect algebra and (K , +) is an abelian group, a morphism
f : E → K such that a ⊥ b, a, b ∈ E imply f (a ⊕ b) = f (a) + f (b) is called a
K -valued measure.

Theorem 3.2. Let (E ; ⊕, 0, 1) be a divisible effect algebra. Then there is a
partially ordered abelian group (G, G+) such that G = G+ − G+, with an element
u ∈ G+ such that the following properties are satisfied:

(i) E is isomorphic with the interval effect algebra [0, u],
(ii) [0, u] generates G+ (in the sense that every element in G+ is a finite

sum of elements of [0, u]),
(iii) every K -valued measure f : E → K can be extended uniquely to a

group homomorphism f ∗ : G → K .

The group G from the earlier theorem, which is uniquely defined up to iso-
morphism, is called a universal group (or a a unigroup) for E (Foulis and Bennett,
1980). Note that u is an order-unit of G, that is, for every x ∈ G there is n ∈ N

such that −nu ≤ x ≤ nu. Moreover, it has been proved that the unigroup can be
endowed with a structure of a rational vector space.
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Corollary 3.1. Let (E ; ⊕, 0, 1) be a divisible effect algebra. The group G from
Theorem 3.2 can be endowed with a structure of an ordered vector space over the
field Q of rational numbers.

Let (V , V +) be an ordered rational vector space, and let u ∈ V + be an order
unit of V . Observe that the the interval [θ , u] generates V +. Indeed, for every
x ∈ V + there is n ∈ N such that 1

n x ≤ u, and x = n( 1
n x). Moreover, according to

Fuchs (1963, Proposition II.3(a)), (V , u) is directed, i.e. V = V + − V +.
Recall that a partially ordered abelian group G is unperforated if nx ≥ 0 for

some n ∈ N and x ∈ G implies x ≥ 0 (Goodeaarl, 1986). It is clear that if (G; u)
bears a structure of a rational vector space, it must be divisible and unperforated.
Conversely, every unperforated partially ordered abelian group can be embedded
into an ordered rational vector space via its divisible hull (Pulmannová, 2001).2

Recall that an effect algebra E is convex (Gudder and Pulmannová, 1998) if
for every a ∈ E and every λ ∈ [0, 1] there exists an element λa ∈ E such that the
following conditions hold.

(C1) If α, β ∈ [0, 1] and a ∈ E , then α(βa) = (αβ)a.
(C2) If α, β ∈ [0, 1] with α + β ≤ 1 and a ∈ E , then αa ⊥ βa and (α +

β)a = αa ⊕ βa.
(C3) If a, b ∈ E with a ⊥ b and λ ∈ [0, 1], then λa ⊥ λb and λ(a ⊕ b) =

λa ⊕ λb.
(C4) If a ∈ E , then 1a = a.

Clearly, every convex effect algebra is divisible.
A map (λ, a) �→ λa that satisfies (C1)–(C4) is called a convex structure on

E . Gudder and Pulmannová (1998, Theorem 3.1) showed that every convex ef-
fect algebra E is isomorphic (as convex effect algebras) to an interval [θ , u]3 that
generates a real ordered linear space (V ; V +) (which is unique up to order isomor-
phism), and the effect algebra order coincides with the linear space order restricted
to [θ , u]. Clearly, a convex effect algebra is divisible, and it has been proved by
Pulmannová (2001) that the ordered rational vector space (G; G+) from Corollary
1 is a rational subspace of the real linear space (V ; V +) from Theorem 3.1 of
Gudder and Pulmannová (1998).

Moreover, it can be proved that every divisible effect algebra can be considered
as a subeffect algebra of a convex effect algebra. We need the following lemma.

2 Consider the direct product G × N and an equivalence relation (a, n) ≡ (b, m) if ma = nb. Let H be
the quotient with respect to this relation. Denote a

n the image of (a, n) in H . If we define operation
+ on H by a

n + b
m = ma+nb

mn , the group H has all required properties. The group H is called the
divisible hull of G. It is unique up to isomorphism. Putting H+ = { a

n : a ∈ G+}, we define a partial
order on H .

3 We denote by θ the zero vector of a vector space.
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Lemma 3.3. Let V be a vector space over a field F and let G be a field that
extends F. Then there is a vector space over a field G that contains V as an
F-subspace.

Moreover, if F and G are ordered with F+ ⊂ G+, then every ordered vector
space (V , V +) over F can be embedded into an ordered vector space (W, W +)
over G as an ordered F-subspace.

Proof: One can consider G as a vector space over F and put W = G ⊗F V . It
follows from the universal property of algebraic tensor products that the vector
space W over F can be made into a G-space of the same (Hammel) dimension as V .
Indeed, define ⊗ : G × V → G ⊗F V , (α, v) �→ α ⊗ v . The map fα : (β, v) �→
αβ ⊗ v ,α, β ∈ G, is bilinear, hence induces a unique F-linear map τα : G ⊗F V →
G ⊗F V such that τα · ⊗ = fα . Then the mapping

G × (G ⊗F V ) → G ⊗F V ,

(α, x) �→ τα(x)

induces a G-linear structure on G ⊗F V . It can be easily verified that G ⊗F V
becomes a G-linear space.

Now let F+, G+, and V + be the corresponding positive cones in F, G and V ,
and assume that F+ ⊂ G+. Consider

W + :=
{

n∑
i=1

αi ⊗ vi , αi ∈ G+, vi ∈ V +
}

.

For every β ∈ G+, τβ

( ∑n
i=1 αi ⊗ vi

) = ∑n
i=1 βαi ⊗ vi ∈ W +. If

∑n
i=1 αi ⊗ vi

and − ∑n
i=1 αi ⊗ vi belong to W +, then without loss of generality we may assume

that vi , i ≤ n are independent. By the definition of W +, there are βi in G+ such
that − ∑n

i=1 αi ⊗ vi = ∑m
i=1 βi ⊗ vi . Now

∑n
i=1(αi + βi ) ⊗ vi = θ , implies αi =

βi = 0 since αi , βi ≥ 0. Hence, W + is an ordering cone in W , and F+ ⊂ G+

implies V + ⊂ W +. �

Theorem 3.4. Every divisible effect algebra can be embedded (as a divisible
sub-effect algebra) into a convex effect algebra.

Proof: For a divisible effect algebra E , its unigroup (G(E), u) =: (V , u) is an
ordered rational vector space with order unit u. Since Q ⊂ R, and Q+ ⊂ R+, we
may use Lemma 2 to construct an ordered real vector space W . It is easy to verify
that u is an order unit also for W .

Now E is isomorphic to the interval [θ , u]V in V , and the mapping γ :
[θ , u]V → [θ , u]W is an embedding. �
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4. CATEGORICAL EQUIVALENCE

In this section, we prove that divisible effect algebras and rational vector
spaces with order unit are categorically equivalent. For the basic notions in category
theory see e.g. Mac Lane, 1971.

Notice that every morphism h : E → F of divisible effect algebras preserves
also their divisible structure. Indeed, let 0 ≤ q = m

n ≤ 1, then h( m
n a) = mh( 1

n a),
and h(n( 1

n a)) = h(a), hence h( m
n a) = m

n h(a). Similarly, we can see that every
group homomorphism of rational vector spaces is also a homomorphism in the
category of rational vector spaces.

For every divisible effect algebra E , we denote by (G(E), u) its unigroup
considered as an ordered rational vector space with order unit u.

Definition 4.3. Let V be the category whose objects are rational vector spaces
with order unit and whose morphisms are homomorphisms of these structures.

Let D denote the category whose objects are divisible effect algebras and
whose morphisms are homomorphisms of these structures.

Define � to be the mapping from D to V that maps an object E from D to
(G(E), u).

Define � to be the mapping from V to �(V , u), where �(V , u) denotes the
interval effect algebra [θ , u] ⊂ V +.

Lemma 4.5. For any divisible effect algebra E, �E is a rational vector space
(V , u) with order unit u, and the embedding map α : E → �E is a homomorphism
of divisible effect algebras. If f : E → E1 is a homomorphism of divisible effect
algebras, then � f : �E → �E1 is a homomorphism of rational vector spaces
with order units. For any rational vector space (V , u) with order unit u, �(V , u) =
[θ , u] is a divisible effect algebra. If g : (V , u) → (V1, u1) is a homomorphism
of rational vector spaces with order units, then �g : �(V , u) → �(V1, u1) is a
homomorphism of divisible effect algebras.

Proof: By Theorem 3.2 and Corollary 3.1, �E = (G(E), u) is a rational vector
space with order unit u, and E is isomorphic (as divisible effect algebras) with the
unit interval [θ , u] ⊂ G(E)+, so α is this isomorphism. If f : E → E1 is a ho-
momorphism of (divisible) effect algebras, then f · α : E → [θ , u1] is a (V1, u1)-
valued measure on E , which by Theorem 3.2 extends to a group homomorphism
� f : �E → �E1 which maps u to u1. Therefore, � f is also a homomorphism
of rational vector spaces with order unit.

If g : (V , u) → (V1, u1) is a homomorphism of rational vector spaces which
maps u to u1, then its restriction �g : �(V , u) → �(V1, u1) that maps [θ , u] to
[θ , u1], is clearly a homomorphism of divisible effect algebras. �
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From Lemma 4.5 it follows that � and � are functors. Since �E for a divisible
effect algebra E is only determined up to isomorphism, the functor � is determined
up to a natural equivalence ≡.

Theorem 4.6. The functors � : D → V and � : V → D form an equivalence of
categories that is, � · � and � · � are naturally equivalent to the identity functors
of D and V , respectively.

Proof: Let E be a divisible effect algebra. By Theorem 3.2, �(�(E)) = �(G(E),
u) ≡ E .

Let (V , u) be a rational vector space with order unit u. We may (and will)
consider �(V , u) = [θ , u] as a divisible effect algebra and construct its unigroup
��(V , u) = (G(�(V , u)), v). We have to check that (G(�(V , u)), v) is isomor-
phic with (V , u). By Theorem 3.2, the unit interval [θ , v] in G(�(V , u), v) is
isomorphic with the divisible effect algebra [θ , u]. Denote this isomorphism by
β : [θ , v] → [θ , u] ⊆ V . Then by Theorem 3.2, β uniquely extends to a homomor-
phism β∗ : G(�(V , u), v) → (V , u). Since (V , u) and G(�(V , u)), v) are rational
vector spaces with order units, the intervals [θ , u] and [θ , v] are generating for
V + and G(�(V , u))+, respectively and (V , u) and G(�(V , u)), v) are directed, we
have that β∗ is an isomorphism.

It follows that � · � ≡ ID and � · � ≡ IV , where ID and IV are the identity
functors in the categories D and V , respectively. �

5. INFINITESIMAL, SHARP AND EXTREMAL ELEMENTS

Let V be a rational vector space. A functional p : V → R such that for any
x , y ∈ E and any r ∈ R+, p(x + y) ≤ p(x) + p(y) and p(r x) = r p(x) will be
called a Q-convex functional on E .

A functional f : V → R is Q-linear if f is additive and f (qx) = q f (x) for
any q ∈ Q. A Q-linear functional f is positive if it maps V + into nonnegative
numbers.

In what follows, if we speak about a convex (linear) functional on a rational
vector space, we mean a Q-convex (Q-linear) functional.

If (V , u) is a rational vector space with order unit u, a state on (V , u) is a
positive linear functional admitting value 1 on u.

Recall that a divisible effect algebra E is archimedean if whenever a, b, c ∈ E
with a ⊥ b and c ≤ a ⊕ n−1b for every n ∈ N, then c ≤ a (Pulmannová, 2001).
An element a ∈ E is called infinitesimal if a has infinite isotropic index. It follows
that an archimedean divisible effect algebra has no nonzero infinitesimals. The
converse statement does not hold, in general.

An element x ∈ E is called an u-infinitesimal if −u ≤ nx ≤ u for every
n ∈ N.
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Define the mapping on (V , u) as follows:

‖x‖u = inf{q ∈ Q+ : −qu ≤ x ≤ qu}.
According to Goodearl (1986), this mapping has the following norm-like

properties (we write ‖ · ‖ instead of ‖ · ‖u if no confusion threatens):

(a) ‖mx‖ = m‖x‖ (m ∈ N),
(b) ‖x + y‖ ≤ ‖x‖ + ‖y‖,
(c) if −y ≤ x ≤ y, then ‖x‖ ≤ ‖y‖.

If V is nonzero, then

(d) ‖u‖ = 1,
(e) ‖x‖ = max{|s(x)| : s ∈ S(V , u)}, where S(V , u) denotes the state space

of (V , u).

A state on an effect algebra E is a morphism ω from E into the effect algebra
[0, 1] ⊆ R. We denote the set of all states on E by S(E). It can be shown that
every interval effect algebra has at least one state (Bennett and Foulis, 1997), and
hence every divisible effect algebra possesses at least one state. However, even
if E is divisible, it may have only one state (see e.g. Beltrametti et al., 1999,
Example 2), and in applications it is important to have a rich supply of states.
We say that S ⊆ S(E) is separating if ω(a) = ω(b) for every ω ∈ S implies that
a = b. We say that S ⊆ S(E) is ordering (or order determining) if ω(a) ≤ ω(b)
for every ω ∈ S implies a ≤ b. If S is ordering, then S is separating. The converse
need not hold. The role of the properties of the state space can be seen from the
following theorems, which are analogous to corresponding theorems in convex
effect algebras (Beltrametti et al., 1999).

Theorem 5.7. Let E be a divisible effect algebra, (G(E), u) its unigroup. The
following statements are equivalent:

(i) E possesses a separating set of states,
(ii) ‖ · ‖u is actually a norm,

(iii) (G(E), u) has no u-infinitesimals.

Theorem 5.8. Let E be a divisible effect algebra, (G(E), u) its unigroup. The
following statements are equivalent:

(i) E possesses an ordering set of states.
(ii) E is archimedean.

(iii) (G(E), u) is archimedean.
(iv) E can be embedded into a unit interval of an archimedean real order

unit space.
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Recall that an element in an effect algebra is sharp if a ∧ a′ exists and
equals 0.

Let E be a divisible effect algebra. We say that an element a in E is extremal if
for any λ ∈ (0, 1) ∩ Q, a = λb + (1 − λ)c implies b = c. Similarly, as in the case
of convex effect algebras (Beltrametti et al., 1999), we obtain that every extremal
element is sharp, and that if a �= 0 is sharp and a = λb ⊕ (1 − λ)c, λ ∈ (0, 1) ∩ Q,
then b and c are sharp.

Let E be an effect algebra. In agreement with (Beltrametti et al., 1999), we
will say that the set S, S ⊆ S(E) is sharply determining if for any sharp a ∈ E
and any b ∈ E with a �≤ b there is ω ∈ S such that ω(a) = 1 and ω(b) �= 1.

Theorem 5.9. Let E be a divisible effect algebra with a sharply determining set
of states S ⊆ S(E). Then the following cases result:

(a) Every sharp element of E is extremal, and hence the sharp and extremal
elements coincide.

(b) The set of all sharp elements forms a subeffect algebra Es of E. Moreover,
with respect to the operations taken in it, Es is an orthomodular poset.

Proof: The proofs of (a) and the first part of (b) are the same as for convex effect
algebras, see (Beltrametti et al., 1999), we will prove only the last statement in (b).

Assume that a, b ∈ Es , a ⊥ b, then c := a ⊕ b ∈ Es and a ≤ c, b ≤ c. As-
sume that d ∈ Es is an upper bound of a, b. Then d ′ is a lower bound of a′, b′,
hence ω(d ′) = 1 implies ω(a′) = ω(b′) = 1. This yields ω(a) = ω(b) = 0, hence
ω(a ⊕ b) = 0. It follows that ω(d ′) = 1 implies ω((a ⊕ b)′) = 1, hence a ⊕ b ≤ d.
We proved that a ⊕ b is the least upper bound of a and b in Es , i.e., a ⊕ b =
a ∨Es b, which means that Es bears a structure of an OMP. �

6. RELATIONS TO MV-ALGEBRAS

An MV-algebra is an algebraic system (A, �, ′ , 0, 1), where 0, 1 ∈ A, ′ is a
unary operation and � is a binary operation on A, which satisfy the following
conditions:

(MV1) (a � b) � c = a � (b � c),
(MV2) a � 0 = a,
(MV3) a � b = b � a,
(MV4) a � 1 = 1,
(MV5) a � a′ = 1
(MV6) (a′)′ = a,
(MV7) 0′ = 1,
(MV8) (a′ � b)′ � b = (a � b′)′ � a.
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The concept of MV-algebras was introduced to study multi-valued logics (Chang,
1958; Mundici, 1986). As with effect algebras, a partial order can be introduced
on A by defining a ≤ b if there exists a c ∈ A such that a � c = b. It can be
shown that A is a distributive lattice with respect to this ordering. We write a ⊥ b
if a ≤ b′. Relationships between effect algebras (or, equivalently, D-posets) and
MV-algebras have been studied by Kôpka and Chovanec (1994), Pulmannová
(1997), and Dvurecčenskij and Pulmannová (2000).

We say that an effect algebra (E ; ⊕, 0, 1) is an MV-algebra if there is an
operation � such that (E ; �, ′ , 0, 1) is an MV-algebra and a ⊕ b = a � b whenever
a ⊥ b. Hence, if E is an MV-algebra, E is lattice-ordered.

Conversely, given an MV-algebra A, we can endow A with a structure of an
effect algebra with the same order by restricting the total �-operation to orthogonal
pairs.

According to Mundici (1986), a unit interval [0, u] in an abelian lattice-
ordered group (G, u) with order unit u is an MV-algebra, and conversely, every
MV-algebra A can be represented this way. Moreover, (G, u) is a unigroup for A
if we consider it as an effect algebra (Ravindran, 1996).

Observe that in a lattice ordered divisible effect algebra we have 1
n a ∨ 1

n b =
1
n (a ∨ b) (a, b ∈ E , n ∈ N). Indeed,

1

n
a,

1

n
b ≤ 1

n
(a ∨ b) ≤ 1

n
1.

Assume that for a c ∈ E , we have 1
n a, 1

n b ≤ c. Then

1

n
a,

1

n
b ≤ c ∧

(
1

n
1

)
≤ 1

n
1 ⇒ a, b ≤ n

(
c ∧

(
1

n
1

))
≤ 1.

Hence,

a ∨ b ≤ n

(
c ∧

(
1

n
1

))
, ⇒ 1

n
(a ∨ b) ≤ c ∧

(
1

n
1

)
≤ c.

Similarly, as for convex effect algebras, we have the following statement. The
proof follows the pattern of convex effect algebras.

Theorem 6.10. A divisible effect algebra E is an MV-algebra if and only if E is
lattice ordered.

It is well known that the divisible hull of a lattice-ordered abelian group is
lattice-ordered, which yields the following result.

Theorem 6.11. Every MV-algebra can be embedded into a unit interval [θ , u]
of a rational vector lattice (V , u) with order unit u.
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Recall that an effect algebra E has the Riesz decomposition property (RDP,
in short) if the following equivalent conditions are satisfied.

(1) a ≤ b ⊕ c (a, b, c ∈ E) ⇒ a = a1 ⊕ a2, a1, a2 ∈ E , a1 ≤ b, a2 ≤ c.
(2) a1 ⊕ a2 = b1 ⊕ b2 (ai , b j ∈ E , i, j ∈ {1, 2} ⇒ ∃wi j ∈ E , i, j ∈ {1, 2},

ai = wi1 ⊕ wi2, i ∈ {1, 2}, b j = w1 j ⊕ w2 j , j ∈ {1, 2}.
Notice that a lattice-ordered effect algebra satisfies RDP if and only if it is an
MV-algebra. There are lattice-ordered effect algebras which do not satisfy RDP,
e.g. the “diamond” (Dvurečenskij and Pulmannová, 2000).

Recall that an abelian partially ordered group (G, G+) has the Riesz decom-
position property if one of the (equivalent) conditions (1) and (2) is satisfied for
positive elements with ⊕ replaced by the group operation +.

Notice that every lattice-ordered abelian group satisfies RDP. It has been
proved by Ravindran (1996) that every effect algebra E with RDP is isomorphic
with a unit interval [0, u] in its unigroup (G, u), which also has RDP. Moreover,
following Fuchs (1965, Proposition 2.5), an unperforated abelian group with the
RDP can be embedded into a divisible hull which has also the RDP. Summarizing,
we obtain the following result.

Theorem 6.12. (a) Every divisible effect algebra E with the Riesz decomposition
property is isomorphic with an interval [θ , u] in a rational vector space (V , u) with
RDP.

(b) An effect algebra E with the Riesz decomposition property can be embed-
ded into a divisible effect algebra with RDP if and only if its unigroup (G(E), u)
is unperforated.

We will say that an element a in a divisible MV-algebra A is extremal if it is
extremal in the effect algebra corresponding to A.

Our last result shows that sharp and extremal elements in a divisible MV-
algebra coincide.

Theorem 6.13. An element a in a divisible MV-algebra A is sharp if and only if
it is extremal.

Proof: It suffices to prove that a sharp element is extremal. Assume that a ∈ A
is sharp, and a = λb ⊕ (1 − λ)c, λ ∈ [0, 1] ∩ Q. Then b and c are sharp. It is
easy to check that a′ = λb′ ⊕ (1 − λ)c′. Assume that there is a nonzero element
x ∈ A such that x ≤ b, x ≤ c′. We find n ∈ N such that 1

n is a lower bound of λ

and (1 − λ). Then 1
n x ≤ λb ≤ a, and 1

n x ≤ (1 − λ)c′ ≤ a′. It follows that x = 0,
hence b ∧ c′ = 0. But in an MV-algebra b ∧ c′ = 0 implies b ⊥ c′ (Pulmannová,
1997), hence b ≤ c. By symmetry, so b = c. This proves that a is extremal. �
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